Wednesday, July 24, 2013

Ultra-rare decay confirmed in LHC

Scientists have confirmed one of the rarest phenomena of decay in particle physics, found about three times in every billion collisions at the LHCb.

They observed a particle called a Bs meson decaying into two muons for the first time.

The way it unfolds casts doubt on versions of the theory of physics known as Supersymmetry (Susy).

It was hoped Susy could explain gaps in the Standard Model, which is the theory of how the Universe works.

The vast LHC machine, housed in a circular tunnel that runs for 27km beneath the French-Swiss border, smashes beams of protons together at close to light speeds.

Detectors positioned at key points around the underground "ring" are then used to scour the wreckage of these collisions for signs of new particles and physical phenomena.

The theory Susy proposes that each particle has a heavier version of itself which could explain the ever mysterious dark matter, believed to make up a quarter of our Universe.

Needle in a haystack

However, the rate of decay found was predicted by the Standard Model, even though it's still seen as an incomplete description of nature. It is not yet able to explain gravity, or indeed the dark matter and dark energy which together make up 95% of the Universe.

The findings were announced at the EPS conference in Stockholm and had the 5-sigma level of significance required to reach the level of a formal discovery.

This builds on a previous announcement of the findings which had lesser statistical significance as the team had not yet analysed all the data.

The observations at LHCb and CMS were so rare that Bs mesons only decayed into two muons about three times in every billion collisions.

The LHCb team announced: "Finding particle decays this rare makes hunting for a needle in a haystack seem easy."

This is due to the hundreds of millions of collisions the LHC produced every second, with each one producing hundreds of new particles that leave electrical signals in the giant detectors.

Quantum loop

Val Gibson, leader of the Cambridge particle physics group and member of the LHCb experiment, told BBC News that it was the rarest decay they have observed so far.

"The reason it's so rare is the fact that it doesn't decay easily into the final quark particles we know about. It has to go through a loop process, like a quantum loop. It's not a straight road but it has to go round a roundabout before it can get to the final state particles.

"Because it's got this roundabout in it, it means that other heavy supersymmetric particles [could potentially] enter the roundabout and make a big difference to the decay rate," Prof Gibson added.

But the quarks did not have heavy particles blocking the decay.

Shy physics

"There was no observation of Supersymmetry, you would have to fine-tune the theory to explain the measurements found," Prof Gibson explained.

"The Supersymmetry theorists have not given up, however it is becoming harder and harder for them to explain these findings.

"Measurements of this very rare decay significantly squeeze the places new physics can hide. The UK LHCb team are now looking forward to the LHC returning at even higher energy and to an upgrade to the experiment so that we can investigate why new physics is so shy."

Tara Shears from the University of Liverpool also works with the LHCb, but was not involved with this particular discovery. She said: "Supersymmetry is starting to look less likely to be a good description of the universe."

"The catch is that Supersymmetry is quite a loosely defined theoretical model which means it has many uncertainties in it. It's impossible to rule it out altogether.

"This result has has really put the squeeze on the possibilities of the different ways Supersymmetry could be possible," she told BBC News

The Standard Model

? The Standard Model is the simplest set of ingredients - elementary particles - needed to make up the world we see in the heavens and in the laboratory

? Quarks combine together to make, for example, the proton and neutron - which make up the nuclei of atoms today - though more exotic combinations were around in the Universe's early days

? Leptons come in charged and uncharged versions; electrons - the most familiar charged lepton - together with quarks make up all the matter we can see; the uncharged leptons are neutrinos, which rarely interact with matter

? The "force carriers" are particles whose movements are observed as familiar forces such as those behind electricity and light (electromagnetism) and radioactive decay (the weak nuclear force)

? The Higgs boson came about because although the Standard Model holds together neatly, nothing requires the particles to have mass; for a fuller theory, the Higgs - or something else - must fill in that gap

Source: http://www.bbc.co.uk/news/science-environment-23431797#sa-ns_mchannel=rss&ns_source=PublicRSS20-sa

elizabeth banks battle royale key largo ryan madson louisiana primary syracuse basketball chipper jones

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.